PROVA DE CONHECIMENTOS III

Há parques em que as atrações são a própria natureza. Rios, montanhas, praias e florestas são as principais atrações em polos de ecoturismo. Apreciar as paisagens, as águas correntes, as areias finas, os pássaros, tudo isso faz parte das atividades de lazer, esporte e educação no ecoturismo. Os empreendimentos de ecoturismo, diferentemente do turismo de massa, visam aos melhores resultados para o turista — a quantidade de turistas é limitada para minimizar o impacto ao local. Conservar e conscientizar são destaques nesse tipo de turismo. Vários são os polos de ecoturismo no Brasil: os Lençóis Maranhenses e a floresta amazônica são alguns exemplos.

Nesses polos, pode haver criadouros do mosquito *Aedes aegypti*, vetor da febre amarela, uma doença infecciosa, como a tuberculose, a doença de Chagas e a criptococose.

Considerando o texto acima e aspectos diversos relacionados ao tema nele abordado, julgue os itens a seguir.

- Nas regiões onde há pouca interferência humana, como nas reservas e nos parques protegidos, o potencial biótico é favorecido pela resistência ambiental, que atua em favor do crescimento da população das espécies.
- 2 Na floresta amazônica, as regiões utilizadas para as atividades de ecoturismo estão em estágio de sucessão primária de desenvolvimento.
- 3 A maioria das árvores de grande porte encontradas na floresta amazônica é composta de briófitas.
- 4 O agente causador da febre amarela é um parasita intracelular obrigatório.
- 5 A tuberculose é uma doença causada por protozoário; por isso, o tratamento de paciente com essa doença inclui o uso de vacinas e antibióticos de primeira linha.
- **6** O fungo do gênero *Cryptococcus*, causador da criptococose, é um organismo eucarionte heterótrofo.
- 7 Em um parque marinho, um caranguejo se locomovendo com uma concha vazia sobre si e uma anêmona-do-mar presa nessa concha exemplifica uma relação intraespecífica harmônica denominada mutualismo, pois esses organismos dependem um do outro para sobreviver.

Em um mapa de uma reserva ecológica, foi inserido um sistema de coordenadas cartesianas ortogonais xOy, em que a unidade de medida é o quilômetro. Nesse mapa, os pontos A=(0,2), B=(6,10) e C=(12,3) correspondem a pontos de apoio a turistas.

Com referência a essas informações, julgue os itens de 8 a 12.

- 8 Se o gráfico da parábola da forma $y = ax^2 + bx + c$, em que a, b e c são constantes reais, contém os pontos A, B e C, então $12 \times a \times c = -5$.
- **9** Se a reta x = y + 4 contém uma trilha dentro da reserva, então a distância do ponto A à reta a menor distância do ponto de apoio A à trilha é superior a 6 km.
- **10** Apenas um dos pontos de apoio da reserva ecológica está dentro da região que corresponde ao conjunto dos pares (x, y) tais que $y < x^2(x 6)^2$.

- 11 Se um turista estiver em um dos pontos de apoio, então, para ir andando aos outros dois pontos, ele deve caminhar pelo menos 19 km.
- 12 Considere que entre os pontos *A* e *B* exista uma trilha em linha reta para o turista caminhar e que, por questões de segurança e de preservação do ecossistema, ele tenha permissão para entrar na reserva até, no máximo, 100 m da trilha. Nesse caso, a área da região correspondente à referida permissão é inferior a 2,1 km².

As dores musculares, comuns em praticantes de caminhadas e passeios de bicicleta, são, geralmente, aliviadas com o emprego de pomadas à base de salicilato de metila. Esse composto é obtido industrialmente a partir da seguinte reação de esterificação do ácido salicílico, a qual é catalisada por ácido.

$$C_7H_6O_3 + CH_4O \Leftrightarrow C_8H_8O_3 + H_2O$$

A 1 atm, a temperatura de fusão do ácido salicílico é 159 °C; e, a 0,027 atm, a temperatura de ebulição dessa substância é 211 °C (à pressão normal, a decomposição ocorre em temperatura inferior à temperatura de ebulição).

Considerando as informações apresentadas, julgue os itens subsequentes.

- 13 O metanol possui ponto de ebulição inferior ao da água porque, ao contrário da molécula de água, a do metanol é apolar.
- **14** Sob a mesma pressão, as temperaturas de fusão e de ebulição do salicilato de metila são superiores às do ácido salicílico.
- **15** A massa molar do salicilato de metila é 152 g/mol.
- **16** Considerando-se os pontos de fusão e de ebulição fornecidos, infere-se que, a 1 atm e 25 °C, o ácido salicílico é um sólido.
- 17 Considere que, para a reação mostrada, tenham sido utilizados 30,0 g de ácido salicílico e que, ao final da reação, tenham sido isolados 21,0 g do salicilato de metila. Nesse caso, o rendimento da reação, em relação à conversão do ácido salicílico, foi superior a 70%.
- **18** À pressão de 0,027 atm, uma substância pode ser mantida no estado líquido a temperaturas superiores ao que seria possível a 1,0 atm. Isso se justifica pelo fato de a temperatura de ebulição de uma substância ser maior a pressões mais reduzidas.

A síntese do salicilato de metila foi realizada com a adição de ácido salicílico e metanol em excesso. Como catalisador, foram adicionados 10,0 mL de uma solução concentrada de ácido sulfúrico ($\rm H_2SO_4$) com densidade igual a 1,83 g/mL e concentração de 98% em massa.

A respeito desse processo, julgue os itens que se seguem.

- **19** A massa de ácido sulfúrico presente nos 10,0 mL da solução empregada no processo é superior a 18,0 g.
- **20** A adição do catalisador ácido desloca o equilíbrio no sentido da formação do salicilato de metila.
- 21 O emprego de metanol em excesso desloca o equilíbrio químico da reação no sentido da formação dos produtos e, dessa forma, contribui para aumentar o grau de conversão do ácido salicílico em salicilato de metila.

Para isolar o salicilato de metila sintetizado a partir do ácido salicílico foi adotado o seguinte procedimento:

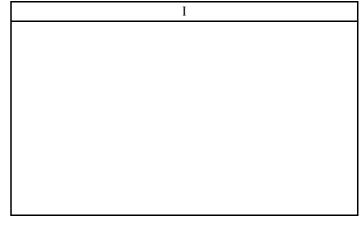
- I destilação para a remoção do metanol não reagido;
- II dissolução da mistura restante em éter dietílico, um solvente orgânico volátil;
- III lavagens sucessivas da solução etérea com solução aquosa de bicarbonato de sódio (NaHCO₃) na concentração de 0,2 mol/L, para neutralizar e remover o catalisador ácido e o ácido salicílico não reagido;
- IV secagem da solução etérea com MgSO₄ anidro;
- V destilação da solução para a remoção do éter.

As lavagens com a solução de bicarbonato de sódio, na etapa III, foram repetidas até que o ácido salicílico não reagido tivesse sido totalmente removido a partir da fração orgânica. Para essa certificação, a fase aquosa, depois de separada da fase orgânica, foi acidificada e, dessa forma, o equilíbrio mostrado a seguir foi deslocado para a direita, e gerou o ácido na forma não ionizada, que pode ser considerado insolúvel em meio aquoso. Na reação abaixo, A e HA representam, respectivamente, as formas ionizada e não ionizada do ácido salicílico.

$$A^- + H_3O^+ \Leftrightarrow HA + H_2O$$

Assim, enquanto a fração aquosa continha o íon salicilato, o ácido precipitava após a acidificação do meio. Terminada a precipitação, considerou-se que não havia mais ácido salicílico na solução e as lavagens puderam ser cessadas.

A partir dessas informações, julgue os itens de 22 a 25, assinale a opção correta no item 26, que é do tipo C, e faça o que se pede no item 27, que é do tipo B, e no item 28, que é do tipo D.


- 22 Uma solução aquosa de bicarbonato de sódio 0,20 mol/L pode ser preparada dissolvendo-se 8,40 g do soluto em água suficiente para a obtenção de 500,0 mL de solução.
- **23** A equação a seguir, em que o H₂CO₃ gerado pode posteriormente decompor-se em CO₂ (g) e H₂O (l), é a equação balanceada para a reação de neutralização do ácido sulfúrico pelo bicarbonato de sódio.

$$H_2SO_4(aq) + 2NaHCO_3(aq) \rightarrow 2H_2CO_3(aq) + Na_2SO_4(aq)$$

- 24 Considere que a solução em questão tenha comportamento ideal e que a constante de acidez do ácido salicílico seja igual a 1,0×10⁻³. Nesse caso, se o pH de uma solução do ácido salicílico for reduzido a 2,0, então o grau de ionização do ácido será superior a 12%.
- **25** O MgSO₄ é um sal inorgânico e sua nomenclatura oficial é sulfeto de magnésio.
- **26** O procedimento mais adequado para a separação das fases orgânica e aquosa obtidas na etapa III referida é a
 - filtração.
 - destilação.
 - decantação.
 - centrifugação.

- 27 Considere as seguintes informações: após o processo de síntese, restou uma amostra de salicilato de metila contaminada pelo ácido salicílico não reagido; para determinar o teor da contaminação, dissolveu-se 1,00 mL da amostra em solvente adequado e titulou-se a mistura com uma solução padrão de NaOH na concentração de 1,00×10⁻³ mol/L; o ponto de equivalência foi atingido quando 10,0 mL da solução padrão de NaOH foram adicionados. Com base nessas informações, e considerando que somente o ácido salicílico seja capaz de reagir com o NaOH, determine a concentração, em mmol/L, de ácido salicílico na amostra analisada. Após efetuar todos os cálculos solicitados, despreze, para a marcação no Caderno de Respostas, a parte fracionária do resultado final obtido, caso exista.
- 28 Nos respectivos espaços abaixo, escreva a fórmula estrutural
 - I do éter dietílico;
 - II de um isômero de função do éter dietílico.

Em cada uma das fórmulas solicitadas, indique todas as ligações químicas. Indique também, pelo respectivo símbolo, cada átomo presente na molécula.

	II		

Os espaços reservados acima são de uso opcional. Caso os utilize, não se esqueça de transcrever as suas respostas para o **Caderno de Respostas**.

Para $n=1, 2, 3, \cdots$, considere a sequência $b_n=2^{a_n}$, em que a sequência a_n é uma progressão aritmética (PA). Sabendo que $2^{12}=4.096$, julgue os itens seguintes.

- **29** Se $a_1 = 0$ e a soma dos seis primeiros termos da PA for igual a 30, então a soma dos seis primeiros termos da sequência b_n será superior a 1.300.
- **30** Se a razão da PA for igual a 3, então a sequência b_n será uma progressão geométrica de razão igual a 8.

A partir de 2014, passou a ser disputado o campeonato mundial de Fórmula E, categoria de automobilismo em que os veículos são movidos a eletricidade. No primeiro ano, todos os veículos utilizaram baterias de íon-lítio, com potência máxima de 200 kW. Os carros foram dotados de um sistema de armazenamento e recarga de energia, que transforma a energia cinética do carro em carga para a bateria.

As principais vantagens das baterias de íon-lítio são a elevada tensão elétrica gerada (da ordem de 4,0 V) e a elevada densidade energética (entre 100 e 150 Wh/kg). O funcionamento das baterias se baseia na migração de íons Li⁺ através de um eletrólito. Em uma das configurações mais comuns, o anodo é um eletrodo de carbono, enquanto o catodo é formado por LiCoO₂. No processo de carga, o anodo de carbono é abastecido com elétrons vindos do catodo e, para que a neutralidade seja mantida, íons Li⁺ migram simultaneamente do catodo para o anodo. Na descarga, o processo se inverte: os elétrons migram do anodo para o catodo através do circuito externo, gerando a corrente elétrica. As reações podem ser indicadas conforme a equação a seguir.

$$LiCoO_2 + C_6$$
 $\xrightarrow{\text{carga}}$ $CoO_2 (s) + LiC_6$ descarga

Tendo como referência inicial as informações acima, julgue os itens de 31 a 37.

- 31 No processo de carga da bateria íon-lítio, o cobalto é oxidado do estado Co³⁺ para Co⁴⁺.
- **32** Mesmo oferecendo menos riscos ao ambiente que as baterias de mercúrio, as baterias de íon-lítio devem ser recicladas, assim como as de mercúrio.
- **33** O lítio é o elemento metálico da Tabela Periódica com a menor energia de ionização.
- 34 Considerando-se que a massa molar do lítio seja 6,9 g/mol e que a constante de Faraday seja 96.500 C/mol, conclui-se que, se uma bateria íon-lítio operar durante 9.650 s com intensidade de corrente elétrica constante e igual a 2,0 A, então a quantidade de íons lítio transferida durante essa operação será superior a 1,0 g.
- **35** Considere a reação global a seguir, que ocorre nas baterias convencionais chumbo/ácido e os potenciais padrões das semirreações (E°) fornecidos.

$$PbO_2(s) + Pb(s) + 2SO_4^{2-}(aq) + 4H^+(aq) \rightarrow 2PbSO_4 + 2H_2O$$

semirreação: $PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$ potencial padrão: $E^o = -0.36 \text{ V}$

semirreação: $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$

potencial padrão: E° = 1,69 V

A partir dessas informações, conclui-se que é necessária a conexão em série de pelo menos duas baterias chumbo/ácido, operando sob condições padrão, para que seja gerado um potencial elétrico igual ou superior a 4,0 V.

- 36 Considere que dois veículos (A e B) realizarão uma corrida de 64 voltas, em uma pista fechada com 4,1 km de extensão. Considere, ainda, que durante a corrida os veículos se desloquem com velocidade escalar constante e que A dê uma volta completa na pista em 80 s e B gaste 2 s a mais para percorrer a mesma distância. Nessa situação, se, na largada, A estiver 20 m à frente de B, então, antes da metade da corrida, A estará uma volta completa na frente de B.
- 37 Considere que uma equipe tenha feito as seguintes observações relativas ao desempenho de seus veículos em determinada temporada: na primeira corrida, o desempenho foi 1% superior ao da temporada anterior; a cada corrida, o desempenho foi melhorando 1% com relação à corrida anterior. Nessa situação, considerando-se 1,105 como valor aproximado para 1,01¹⁰, infere-se que, na 20.ª corrida da temporada, a melhoria no desempenho dos veículos ainda não teria atingido 22% em relação à temporada anterior.

O nitrometano — $\mathrm{CH_3NO_2}$ — é frequentemente usado como aditivo em combustíveis para aeromodelos e veículos de competição. Em decorrência do elevado teor de oxigênio do composto, é necessário menos $\mathrm{O_2}$ (g) durante a sua combustão, o que permite a injeção de maior quantidade de combustível no motor e resulta em ganho de potência.

Considerando o texto acima e sabendo que a fórmula molecular do octano, componente típico da gasolina, é C_8H_{18} , julgue os itens **38** e **39** e assinale a opção correta no item **40**, que é do **tipo C**.

- **38** A combustão nos motores a gasolina é comparável ao metabolismo aeróbio de uma célula pelo fato de que ambos associam um combustível ao oxigênio molecular e os transformam em CO₂ e H₂O (e outros produtos, conforme o caso), com aproveitamento parcial da energia liberada nas reacões.
- **39** O nitrometano é um isômero da metanamida.
- 40 Na estrutura do nitrometano, o átomo de nitrogênio
 - possui carga positiva e os átomos de oxigênio, carga negativa.
 - possui carga negativa e os átomos de oxigênio, carga positiva.
 - forma uma ligação simples com cada átomo e possui um par de elétrons não ligante.
 - forma uma ligação simples com cada átomo, sem par de elétrons não ligante.

Industrialmente, o gás hélio é obtido a partir da condensação fracionada dos componentes do gás natural. Embora encontrado em pequena proporção na atmosfera terrestre, o hélio é o segundo elemento químico em abundância no universo. Ele pode ser formado a partir de reações de fusão de isótopos de hidrogênio, as quais são altamente exotérmicas e são a principal fonte de energia do Sol. Uma dessas reações é mostrada na equação abaixo, em que o índice superior corresponde ao número de massa da espécie e o inferior, ao número de prótons. A equação mostra, ainda, a variação de entalpia (ΔH) da reação.

$${}_{1}^{2}H + {}_{1}^{7}H \rightarrow {}_{2}^{4}H + {}_{0}^{1}n$$
 $\Delta H = 1.5 \times 10^{12} \frac{\text{J}}{\text{mol}}$

Até o momento, não existe tecnologia suficiente para controlar as reações de fusão nuclear e, dessa forma, não se consegue empregá-las como fonte de energia.

Tendo o texto acima como referência inicial, julgue os itens de 41 a 46 e faça o que se pede no item 47, que é do tipo B.

- **41** Na reação mostrada, o isótopo de hidrogênio não identificado possui dois nêutrons e, portanto, número de massa igual a 3.
- 42 Considere que, em termos da porcentagem de volume, uma amostra de gás natural bruto seja composta por 1,0% de He, 90,0% de CH₄ e 9,0% de CO₂. Nesse caso, para essa amostra, considerando-se o comportamento ideal para o gás natural, a concentração de He, em porcentagem de massa, é superior a 1,0%.
- 43 O mergulho em grandes profundidades pode causar danos aos mergulhadores devido ao aumento da pressão parcial de oxigênio e de nitrogênio no organismo. Para evitar consequências danosas aos mergulhadores, o gás hélio é frequentemente usado na mistura de gases por eles respirada.
- 44 Do ponto de vista manométrico, o sistema vascular do corpo humano assemelha-se a um recipiente que contém um fluido (o sangue). Por essa razão, a pressão arterial registrada nas panturrilhas de um indivíduo normalmente é mais elevada que aquela registrada em seus braços.
- **45** Quando do resfriamento gradual de uma mistura de gases nobres, o hélio é o primeiro a condensar, já que é o gás nobre com maior ponto de ebulição.
- **46** Em seu estado fundamental de energia, o gás hélio apresenta elétrons desemparelhados, podendo, por isso, ser separado de uma mistura de gases por meio da aplicação de um campo magnético.
- 47 Determine o volume, em L, de uma amostra de gasolina, com calor de combustão igual a 50 kJ/g e densidade 0,75 kg/L, que será queimada para gerar uma quantidade de energia equivalente àquela liberada durante a formação de 1,0 mol de hélio-4 por meio da reação apresentada. Divida o valor encontrado por 10³. Após efetuar todos os cálculos solicitados, despreze, para a marcação no Caderno de Respostas, a parte fracionária do resultado final obtido, caso exista.

A respeito de análise combinatória e polinômios, julgue os próximos itens.

- **48** Se o polinômio $p(x) = x^3 16x^2 + 41x + 154$ possui três raízes reais e uma delas é igual a 7, então a soma do módulo das outras duas raízes é inferior a 10.
- 49 Considere que, em um sistema de emplacamento de veículos, a identificação das placas seja iniciada com três letras distintas, escolhidas entre as 26 letras do alfabeto, seguidas de quatro algarismos distintos, escolhidos entre os números 1, 2, 3, 4, 5 e 6. Nesse caso, o número máximo de veículos que podem ser licenciados é superior a 5×10⁶.

Um dos brinquedos eventualmente encontrados em um parque de diversão é a montanha-russa. Em um trecho de montanha russa, um carrinho de 100 kg de massa passa por um ponto A que se encontra a 10 m de altura, com velocidade escalar de 15 m/s. Supondo que o atrito seja desprezível e adotando a aceleração da gravidade igual a 10 m/s², julgue os itens seguintes.

- 50 Ao atingir o ponto mais alto da montanha russa, a força normal que atua sobre o carrinho realiza um trabalho maior que a força normal que atua no carrinho quando ele está no ponto mais baixo.
- **51** Quando o carrinho atinge um ponto B localizado a 5,0 m de altura, sua velocidade é superior a 18 m/s.
- 52 A energia potencial do carrinho no momento em que ele atinge o ponto A é igual a 10⁴ J.
- 53 Estabelecendo-se como referencial (ponto de energia potencial igual a zero) o plano horizontal que passa pelo ponto B, que está a uma altura menor que o ponto A, o valor obtido para a energia cinética do carrinho no ponto A é menor que o obtido no ponto B.
- **54** Caso haja atrito entre o carrinho e a superfície do trilho da montanha-russa, a energia mecânica total se conserva, pois as forcas não conservativas não realizam trabalho.

A cidade de Las Vegas, nos Estados Unidos da América, famosa pelos cassinos e hotéis, ostenta também uma das maiores rodas-gigantes do mundo. Inaugurada em abril de 2014, a High Roller tem 165 m de altura, 158 m de diâmetro e 28 cabines. Uma volta completa na High Roller dura 30 minutos. A High Roller é 30 m mais alta que a London Eye, de Londres, que possui diâmetro de 122 m e 32 cabines.

Considerando essas informações e assumindo 3,14 como valor aproximado para π e 0,098 como valor aproximado para sen $(\pi/32)$, julgue os itens que se seguem.

- **55** Se os pontos de fixação das cabines sobre a circunferência da London Eye estão igualmente espaçados, então a distância entre tais pontos, medida em linha reta, é superior a 12 m.
- Eye)estivessem montadas em um mesmo parque, localizado em um terreno é plano. Considere, ainda, que um objeto no solo estivesse a uma mesma distância do ponto mais alto de cada uma das rodas gigantes. Nesse caso, se a distância entre o objeto e a projeção ortogonal da posição mais alta da High Roller no solo fosse de 65 m, então a distância do objeto à projeção ortogonal da posição mais alta da London Eye no solo seria superior a 100 m.
- 57 Se, para um instante t ≥ 0, em minutos, a altura, em metros, de uma cabine na High Roller for expressa pela função H(t) = 7 + 79[1 cos(π/15)], então a primeira vez em que essa cabine estará a uma altura de 86 m será em um instante inferior a 8 min.
- **58** A velocidade de rotação da High Roller é inferior a 1 km/h.

Em um parque de diversão, duas crianças estão em uma gangorra, que é constituída de uma tábua apoiada por um suporte. O suporte de apoio se encontra no centro da tábua. As crianças têm massas iguais a 40 kg e 20 kg.

Considerando essas informações e desprezando o peso da tábua, julgue os itens a seguir.

- **59** Se a tábua tiver 6 m de comprimento e se, em cada extremidade da tábua, houver uma criança sentada, então a tábua não ficará paralela ao solo.
- **60** Assumindo-se a aceleração da gravidade igual a 10 m/s², infere-se que a reação do apoio sobre a tábua é igual a 600 N.

Nos parques de diversões, uma atração de muito sucesso são as salas especiais com espelhos que distorcem as imagens ou que se movimentam em relação aos visitantes. A respeito de espelhos e suas propriedades, julgue os itens de **61** a **63**.

- 61 Considere que um observador esteja posicionado sobre o eixo de um espelho esférico côncavo, a uma distância igual a duas vezes a distância do vértice do espelho ao seu centro de curvatura. Nesse caso, aproximando o espelho do observador, haverá um momento em que a imagem do observador desaparecerá.
- **62** Considere que um objeto seja posicionado na frente de um espelho esférico côncavo, sobre o eixo, a uma distância do vértice maior que o raio do espelho. Nesse caso, a imagem será virtual e de tamanho maior que o do objeto; se o objeto for deslocado e posicionado entre o foco e o vértice do referido espelho, a sua imagem ficará real, invertida e menor.

63 Se um espelho plano for deslocado, com velocidade constante *v*, na direção de um observador parado, então a velocidade de deslocamento da imagem em direção ao observador também será igual a *v*.

O olho humano é um mecanismo complexo que capta e interpreta estímulos luminosos. Esse mecanismo envolve um sistema de lentes, células que atuam como transdutores entre a radiação eletromagnética e o fluxo de íons através de canais de membrana até o cérebro, onde, finalmente, o estímulo será interpretado como imagem. Danos nesse sistema podem resultar em alteração das imagens percebidas.

Considerando as informações do texto antecedente, bem como as funcionalidades das estruturas do olho humano, julgue os itens a seguir.

- **64** O ponto cego corresponde a um ponto da imagem cuja informação não chega ao cérebro.
- **65** O fluxo de íons a que se refere o texto corresponde à transmissão de impulso nervoso.
- **66** A catarata é uma doença resultante da perda da transparência normal da córnea.
- **67** O cristalino tem a função de controlar a intensidade da luz que atinge a retina.
- **68** O enrijecimento da pupila impede o ajuste para a focalização de imagens a diferentes distâncias.
- 69 Cones e bastonetes são células fotossensitivas que se localizam na camada denominada retina e revestem a região interna posterior do globo ocular.

De acordo com um dos modelos de estrutura da membrana celular, tal membrana é constituída de duas camadas de fosfolipídios que formam um revestimento fluido delimitando a célula, e imersos nessas camadas há moléculas de proteína. A membrana celular pode ser modelada por um capacitor de placas planas e paralelas.

Tendo as informações acima como referência, julgue os próximos itens, a respeito das membranas celulares.

- 70 Se a distância entre duas camadas de uma membrana celular for igual a 2 nm e a diferença de potencial entre elas for igual a 85 mV, então, um íon, ao se deslocar entre essas duas camadas, estará sujeito a um campo elétrico superior a 40 × 10⁶ V/m.
- **71** A permeabilidade da membrana celular a partículas eletricamente carregadas depende da constante dielétrica da membrana e do potencial elétrico através da membrana.

As células executam diversas funções, ainda que diferentes tipos celulares se adaptem à realização de funções específicas: transportar grandes quantidades de líquidos e nutrientes; produzir moléculas de reserva energética; conduzir estímulos elétricos; alterar suas próprias dimensões; mover-se.

A respeito das características e funções das células animais, julgue os itens subsequentes.

- 72 Células especializadas são encontradas em diferentes órgãos, como, por exemplo, as células parietais presentes na mucosa gástrica, que são responsáveis pela secreção das enzimas digestivas tripsina e elastase.
- **73** O fenômeno denominado motilidade celular pode ser observado em alguns gametas e em algumas células que atuam na defesa do organismo.
- **74** As células da mucosa intestinal são exemplo de células que transportam grandes quantidades de líquidos e nutrientes.
- **75** Os pinacócitos são células que se deslocam por meio de projeções chamadas pseudópodes e realizam a fagocitose dos alimentos que circulam pelo átrio dos poríferos.

No que se refere à origem e à evolução dos seres vivos e às teorias da evolução, julgue os itens seguintes.

- 76 Segundo o pressuposto da lei de transmissão dos caracteres adquiridos, proposta por Lamarck, se as crianças não realizarem, na infância, atividades que estimulem funções cognitivas do cérebro, seus descendentes irão apresentar déficit de atenção e de inteligência.
- 77 Uma das explicações para a perda da densa pelagem nas gerações de hominídeos foi o processo de desertificação das florestas, que substituiu matas por campos abertos (savanas) e deixou os hominídeos mais suscetíveis à radiação solar.
- **78** Por ter perdido sua função, a glândula pineal é exemplo de órgão vestigial na espécie humana. Esse órgão evidencia a evolução dos seres vivos.
- 79 Segundo uma das teorias da evolução humana, embasada em estudos em embriologia comparativa que propunham que as espécies são imutáveis, uma falha no desenvolvimento do embrião de um peixe teria dado origem à espécie humana.

Um brinquedo de parque de diversão é constituído de uma cadeira, de massa M, presa na extremidade de um cabo de aço, de comprimento L. O cabo está suspenso em um teto e o brinquedo comporta-se como se fosse um pêndulo simples. Sendo a cadeira deslocada da sua posição de equilíbrio, localizada no ponto mais baixo A, para uma posição B, o cabo faz um ângulo máximo de 60° com o eixo vertical.

Considerando que, na situação apresentada, todas as forças dissipativas sejam desprezíveis e que a aceleração da gravidade seja $g=10~\text{m/s}^2$ e assumindo como nível de referência o solo, julgue os itens a seguir.

- **80** A energia potencial da cadeira no ponto B pode ser expressa pela relação MgL/2.
- 81 No momento em que a cadeira passa pelo ponto mais baixo da trajetória, ponto A, sua velocidade é nula.

Um parque temático vende ingressos apenas para adultos e crianças. Para determinar a quantidade total de ingressos vendidos no mês de janeiro de determinado ano para adultos e crianças, foram utilizadas, respectivamente, as expressões $A(x) = 320 + 36x - x^2$ e $C(x) = 468 + 28x - x^2$, em que x = 1, 2, ..., 31 corresponde ao dia do mês de janeiro.

Tendo como referência essas informações, julgue os itens **82** e **83** e faça o que se pede no item **84**, que é do **tipo C**.

- **82** Considere que cada visitante (adulto ou criança) frequente o parque, no máximo, duas vezes por dia, usando um ingresso diferente cada vez que o frequenta, e que, no dia 6 de janeiro, 850 pessoas tenham estado no parque. Nesse caso, mais de 200 pessoas estiveram no parque duas vezes, nesse dia.
- **83** Em todos os dias do mês de janeiro, mais crianças que adultos pagaram ingressos no parque temático.
- **84** Se o ingresso custa R\$ 3,00 para um adulto e R\$ 1,00 para uma criança, então, no dia de maior receita possível, o valor arrecadado no parque, **em reais**, foi
 - **a** inferior a 2.500.
 - **6** superior a 2.500 e inferior a 2.600.
 - **9** superior a 2.600 e inferior a 2.700.
 - **o** superior a 2.700.

Uma atração muito popular, especialmente no Caribe, são os passeios no fundo do mar a bordo de submarinos. Nesses ambientes, o CO_2 gerado pela respiração humana deve ser removido. Para isso, pode-se empregar, por exemplo, a reação do CO_2 com o óxido de cálcio apresentada abaixo.

$$CO_2(g) + CaO(s) \rightarrow CaCO_3(s)$$

 $A seguir, são apresentadas as entalpias padrão de formação (\Delta H_f^\circ) das substâncias envolvidas na reação.$

substância: CO₂ (g)

entalpia padrão de formação: -393,5 kJ/mol

substância: CaO (s)

entalpia padrão de formação: -635,1 kJ/mol

substância: CaCO₃ (s)

entalpia padrão de formação: -1.207,0 kJ/mol

Tendo como referência essas informações, julgue os itens seguintes.

- 85 O carbonato de cálcio formado é um sal de caráter básico.
- **86** Se cada pessoa produzir, em média, 20 g de CO_2 por hora, então 1,5 kg de CaO serão suficientes para remover todo o CO_2 produzido por 50 pessoas durante um passeio de 1 hora em um submarino.
- **87** Das entalpias padrão de formação fornecidas infere-se que, a 25 °C, a reação do CaO (s) com o CO₂ (g) absorve calor do interior do submarino.
- **88** O CO₂, o CaO e o CaCO₃ são exemplos, respectivamente, de substâncias molecular, iônica e iônica.

Em um dos brinquedos encontrados em parques aquáticos, quando uma pessoa pula sobre a superfície S1, ela empurra para cima a pessoa que se encontra na superfície S2. Para que isso ocorra, as duas superfícies estão conectadas por meio de um tubo preenchido com ar, que transmite a pressão de S1 para S2.

Tendo como referência essas informações e considerando que a aceleração da gravidade seja igual a 10 m/s², julgue os itens a seguir.

- **89** O peso de uma pessoa durante sua descida em um escorregador com água será inferior ao seu peso real e dependerá da densidade da água.
- 90 Considere que, no brinquedo citado, as áreas S1 e S2 sejam iguais a 2 m² e 6 m², respectivamente; que sobre S1 pule uma pessoa com 50 kg e sobre S2 esteja uma pessoa com 80 kg. Nesse caso, se a força aplicada pela pessoa sobre S1, ao pular, durar 0,04 s, a velocidade de deslocamento, para cima, da pessoa que estiver sobre S2 será superior a 0,70 m/s.
- 91 Se um mergulhador conseguir suportar uma pressão máxima igual a 12 vezes a pressão atmosférica na superfície da Terra, então ele poderá descer dentro de um lago até, no máximo, 110 m de profundidade, em um local onde a gravidade seja de 10 m/s² e a densidade da água, de 1,0 kg/L.

Com a evolução tecnológica, os projetores cinematográficos passaram a utilizar um complexo ajuste de lentes para exibir os filmes nas grandes telas de projeção atuais. A respeito desse assunto, julgue os itens 92 e 93 e assinale a opção correta no item 94, que é do tipo C.

- **92** Se, para uma gravação cinematográfica, forem necessários 45,7 cm de película para cada segundo de filme, então, para se gravar um filme com 2 h de duração, serão necessários mais de 3 km de película.
- 93 Raios que incidem paralelamente ao eixo em uma lente bicôncava são desviados de modo a se tornarem divergentes, ou seja, uma lente bicôncava é uma lente divergente. As extremidades dessas lentes são mais espessas que a parte central.
- **94** No caso de lentes convergentes, se um objeto estiver na região entre o foco e o centro da lente, a imagem formada será
 - virtual, invertida e de maior tamanho.
 - **3** real, direita e de menor tamanho.
 - virtual, direita e de maior tamanho.
 - real, invertida e de menor tamanho.

As salas de cinema devem oferecer aos usuários conforto térmico e boa acústica. A esse respeito, julgue os itens a seguir.

- 95 Uma estratégia adequada para aumentar o isolamento térmico da sala de cinema é dotar as paredes com uma camada de material de alta resistência térmica, de modo que a soma dessa resistência com a da parede formem um composto de maior resistência ao fluxo de calor para dentro do ambiente.
- 96 Pelo fato de uma onda acústica ser longitudinal, o som produzido pela conversa entre pessoas em uma sala de cinema não apresenta o efeito de interferência.
- 97 Na exibição de um filme que mostra um trem se afastando ou se aproximando de uma estação, o efeito sonoro do apito desse trem pode ser reproduzido, na sala de cinema, manipulando-se apenas a altura do som nos alto-falantes da sala.
- 98 Considere que uma fonte sonora se movimente, partindo do repouso e com aceleração a, e se aproxime de um ouvinte estacionado. Nesse caso, se a fonte emite o som com velocidade v e frequência f, então, no instante $t = \frac{v}{2a}$, a frequência captada pelo ouvinte será igual a $\frac{2}{3}f$.
- 99 Em uma sala de cinema completamente lotada, a temperatura aumentará em decorrência da transmissão do calor produzido pelos corpos das pessoas ao ambiente, principalmente pelo processo de convecção.
- 100 Quando a temperatura da sala de cinema estiver muito baixa, espectadores protegidos com casaco de l\u00e1 sentir\u00e3o menos frio que aqueles com casaco de malha de algod\u00e3o, porque a l\u00e1 possui a propriedade de transmitir calor ao corpo humano, diferentemente da malha de algod\u00e3o, que n\u00e3o possui essa propriedade.

Considere as seguintes informações relacionadas aos gráficos correspondentes a perturbações produzidas por duas ondas A e B, isoladamente, em determinado meio e para determinado instante. Os gráficos estão em um sistema de coordenadas cartesianas xOy, em que y é o valor da perturbação e x é o ponto de observação.

Onda A: origem no ponto (0; 0); ponto I em (7,5; 5); ponto II em (30; 0); ponto III em (52,5; -5).

Onda B: origem no ponto (0; 0); ponto I em (7,5; 15); ponto II em (30; 0); ponto III em (52,5; -15).

Considerando essas informações, faça o que se pede no item 101, que é do tipo D.

101 Descreva o princípio da superposição e determine o valor da perturbação resultante nos pontos I, II e III.

O espaço reservado acima é de uso opcional. Caso o utilize, não se esqueça de transcrever a sua resposta para o Caderno de Respostas.

Do ponto de vista térmico, as paredes e portas planas de uma sala de cinema possuem uma resistência térmica R que se relaciona ao fluxo térmico q de acordo com a expressão $q=\frac{\Delta T}{R}$, em que ΔT é a variação de temperatura entre a sala e o exterior. A resistência térmica R, por sua vez, pode ser expressa por $R=r\frac{l}{A}$, em que l, A e r são, respectivamente, a espessura, a área e a resistividade térmica da parede ou da porta.

Na entrada de uma sala de cinema, uma parede, com 23 m de largura e 5 m de altura, é construída de alvenaria (região I). Nessa parede, foi instalada uma porta de madeira, com 5 m de largura e 2 m de altura (região II). A parede de alvenaria tem espessura igual a 25 cm e é feita de material com resistividade térmica de 2 mK/W. A porta tem espessura igual a 5 cm e é feita de madeira com resistividade térmica de 8,0 mK/W.

A partir das informações acima, faça o que se pede no item 102, que é do $tipo\ B$.

102 Calcule, **em mK/W**, o valor da resistividade térmica equivalente do conjunto formado pelas regiões I e II. Inverta o resultado obtido. Após efetuar todos os cálculos solicitados, despreze, para a marcação no **Caderno de Respostas**, a parte fracionária do resultado final obtido, caso exista.

Sabendo que a alimentação em algumas lanchonetes de cinema é baseada em frituras, doces e bebidas com elevados teores de açúcar e sódio, julgue os itens subsequentes.

- 103 Situação hipotética: Em um cinema, a pipoca é vendida em pacotes com dois diferentes tamanhos e preços: um deles, medindo 10 cm × 15 cm × 30 cm, custa R\$ 14,40; o outro, medindo 10 cm × 10 cm × 25 cm, custa R\$ 11,50.
 Assertiva: Nessa situação, o preço do litro de pipoca calculado com base no segundo pacote ultrapassa em mais de 40% o preço do litro de pipoca calculado com base no primeiro pacote.
- 104 O excesso de sódio no organismo pode trazer uma série de distúrbios, como o aumento da pressão arterial, em resposta ao aumento da taxa de diurese.
- **105** A inclusão de proteínas e fibras na dieta e o estímulo ao consumo de água são importantes práticas saudáveis.

Acerca dos ciclos de vida dos principais platelmintos parasitas de humanos, bem como das medidas recomendadas para a sua prevenção, julgue os seguintes itens.

- 106 A hidatidose é uma doença parasitária grave causada por um cestoide que tem os cães como hospedeiros definitivos.
- 107 A espécie Schistosoma mansoni causa uma doença que pode levar o indivíduo a um quadro de convulsões promovidas pelo alojamento de cisticercos no cérebro.
- 108 A teníase é uma doença provocada pela ingestão de verduras contaminadas com larvas microscópicas dos parasitas.
- 109 Como medida preventiva de combate à esquistossomose recomenda-se a construção de instalações sanitárias adequadas, para impedir a contaminação de rios e lagos com fezes de pessoas doentes.

No filme **Up 2009**, um vendedor de balões ergue a própria casa usando balões de gás hélio e parte em uma aventura com o objetivo de realizar um sonho de infância: morar em um lugar paradisíaco, sobre uma montanha, com cachoeiras e uma bela floresta tropical.

Para uma temperatura constante T, a pressão atmosférica p em função da altura h medida a partir da superfície terrestre é

descrita pela função $p = p_0 \times e^{-\frac{M_{or} \times g \times h}{R \times T}}$, em que p_0 é a pressão atmosférica na superfície da Terra (1,0 atm), M_{or} é a massa molar média do ar atmosférico, g é a aceleração da gravidade e R é a

Tendo como referência o texto precedente e considerando o comportamento de gás ideal para os gases envolvidos, julgue os itens 110 e 111 e assinale a opção correta no item 112, que é do tipo C.

- **110** A pressão atmosférica se reduz à metade da pressão na superfície da Terra para uma altura $h < \frac{R \times T}{g \times M_{ar}}$.
- **111** Ao descrever o lugar paradisíaco, o texto faz referência a componentes bióticos e abióticos de um ecossistema.
- 112 Considere que dois balões de gás hélio presos, cada um deles, na extremidade de um fio estejam flutuando próximos um do outro, separados por uma distância de 1 cm, e que os dois fios que os prendem estejam presos a uma mesma superfície. Nessa situação, soprando-se no espaço entre os balões, eles
 - A se aproximarão.

constante universal dos gases.

- **B** se afastarão.
- permanecerão separados e na mesma distância.
- subirão ainda mais.

No filme de ficção científica GATTACA (1997), os pais podem optar por manipular geneticamente seus gametas, de forma a gerar filhos com os melhores padrões genéticos. Na sociedade retratada no filme, os indivíduos gerados sem manipulações genéticas são relegados a funções de menor relevância. O personagem principal do filme é um indivíduo que, concebido biologicamente e com alto risco para algumas doenças, tenta se esquivar do sistema e realizar seus sonhos. A seguir, descreve-se um possível heredograma para a família desse indivíduo (geração III).

Geração I: avós paternos normais; avós maternos: o homem é afetado por uma doença e a mulher é normal.

Geração II: pai normal; mãe afetada por uma doença, com uma irmã normal.

Geração III: indivíduo afetado por uma doença.

A partir das informações acima, julgue os itens de 113 a 118, considerando que uma das doenças do indivíduo em questão seja de herança monogênica autossômica dominante e tenha sido detectada em sua família, conforme mostra o heredograma.

113 Um exemplo de modificação genética possível com a tecnologia atual é a inserção de fragmentos de DNA de uma espécie — contendo um gene específico — em uma célula de outra espécie.

- 114 O padrão de evolução da sociedade de que trata o filme GATTACA, apesar de sofrer forte influência humana, seria coerente com o princípio de seleção proposto por Darwin, mas não necessariamente com a hereditariedade dos caracteres selecionados.
- 115 A probabilidade de o indivíduo em apreço ter um irmão também afetado pela doença é de 25%, caso não haja a manipulação genética descrita na situação do filme.
- 116 A sigla utilizada no nome do filme, GATTACA, representa uma sequência de aminoácidos constituintes do DNA, em alusão ao código genético.
- 117 A verificação do material genético de um indivíduo poderia ser feita analisando-se o DNA contido no núcleo das hemácias de seu sangue.
- **118** O heredograma descrito seria compatível com o de uma família com uma doença autossômica recessiva.
- Os Simpsons, uma série de animação americana criada por Matt Groening, diverte uma legião de fãs em todo o mundo há mais de 25 anos. Considerando os personagens dessa série e aspectos a eles relacionados, julgue os próximos itens.
- 119 Sabe-se que, na abertura clássica do seriado, os 5 membros da família, sendo um deles uma bebê, correm para se sentar em um sofá de 4 lugares diante da TV. Nesse caso, se a bebê sempre sentará no colo de um dos outros quatro membros da família, a quantidade de fotografias distintas que poderão ser tiradas da família sentada no sofá é inferior a 50.
- 120 Considere que, em determinado episódio, o personagem Homer tenha enunciado a seguinte proposição: nos triângulos isósceles, a soma das raízes quadradas de quaisquer dois lados é igual à raiz quadrada do outro lado. Nesse caso, a proposição de Homer só seria válida se o triângulo fosse isósceles e retângulo.
- 121 Considere que, em 1984, a soma das idades dos personagens Homer, Lisa e Bart era igual a 46 anos e que, em 2000, Homer completou 58 anos de idade. Nessa situação, se Lisa nasceu dois anos depois de Bart, então, em 2016, ela teria mais de 30 anos de idade.

O filme **Passageiros** (*Passengers*, 2016) retrata uma história de ficção em que uma nave espacial transporta 5.000 passageiros da Terra para um planeta distante em uma viagem com duração prevista de 120 anos. Os passageiros são colocados em cápsulas para hibernação, mas, devido ao mau funcionamento de uma das cápsulas, um deles acorda 90 anos antes do previsto e, ao perceber o problema, envia imediatamente uma mensagem para a Terra. A mensagem, apesar de viajar na velocidade da luz, leva 19 anos para chegar à Terra.

Se, no filme **Passageiros**, a nave estivesse viajando com velocidade próxima à velocidade da luz, algumas medidas apresentadas no filme seriam alteradas. Nesse caso, as coordenadas e o tempo tomados no sistema de referência na Terra — Ox' — e no sistema de referência na nave — Ox — seriam relacionados como a seguir, segundo a Teoria da Relatividade Especial.

$$x' = \gamma (x - vt)$$
 e $t' = \gamma \left(t - \frac{vx}{c} \right)$

Nessas expressões, $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$, v é a velocidade relativa

entre a nave e a Terra e c é a velocidade da luz.

A partir dessas informações, julgue os itens seguintes.

- **122** O tempo, na mecânica newtoniana, é absoluto, ou seja, independe do estado de movimento do observador ou do observado.
- **123** Se a velocidade da nave fosse de 0,98 c, então os 19 anos que um observador na Terra levaria para receber a mensagem enviada pelo passageiro da nave equivaleriam a menos de dois anos transcorridos na nave.
- **124** De acordo com a Teoria da Relatividade Especial, para o observador na Terra, o tempo passaria mais lentamente na nave, mas, para o observador na nave, o tempo na Terra passaria mais rapidamente.
- **125** Conforme a Teoria da Relatividade Especial, os intervalos espaciais, quando medidos em diferentes sistemas de observação, podem diferir.
- **126** A Teoria da Relatividade Especial é assim chamada por não adotar uma grandeza considerada absoluta.
- **127** Considere que a nave se desloque em linha reta, com velocidade constante. Nesse caso, a velocidade da nave espacial é inferior a $\frac{2}{3}c$.
- **128** De acordo com a Teoria da Relatividade Especial, as medidas de intervalos de tempo são relativas ao estado de movimento daquilo que se observa.

Acerca de volumes e áreas, julgue o item 129 e faça o que se pede no item 130, que é do tipo B.

- 129 Considere as seguintes informações: O quarto de Fermat (La habitación de Fermat, 2007) conta a história de 4 matemáticos que são aprisionados em uma sala, medindo 7 m × 7 m, cujas duas paredes opostas vão se fechando com velocidades iguais a 10 cm/min, param quando um enigma enviado através de um SMS é resolvido e recomeçam a se mover quando um novo enigma é enviado. A partir dessas informações, é correto afirmar que, caso os matemáticos não consigam resolver um enigma, em menos de uma hora o quarto estará com área inferior a 1,5 m².
- 130 Considere que uma pirâmide quadrangular regular cuja base é um quadrado de aresta medindo 1,2 m seja secionada por um plano paralelo à base à distância de 2 m do vértice da pirâmide e que a aresta da secção meça 0,2 m. Com base nessas informações, calcule, em m³, o volume da pirâmide original. Multiplique o valor encontrado por 100. Após efetuar todos os cálculos solicitados, despreze, para a marcação no Caderno de Respostas, a parte fracionária do resultado final obtido, caso exista.

Um alvo para o jogo de dardos é formado por um quadrado, de lado 80 cm, contendo cinco círculos concêntricos, de raios iguais a 2 cm, 10 cm, 15 cm, 20 cm e 25 cm, cujos centros coincidem com o centro da quadrado. No alvo, foi inserido um sistema de coordenadas cartesianas ortogonais xOy, com origem no centro do quadrado. A forma de pontuar implicou na divisão do quadrado em seis regiões disjuntas, tal que as pontuações são atribuídas de acordo com a descrição a seguir. A pontuação atribuída em uma jogada, que consiste no arremesso de 3 dardos, é a soma da pontuação obtida com o arremesso de cada dardo. A probabilidade de o dardo acertar determinada região do quadrado é diretamente proporcional à área dessa região.

```
pontos: 100 região atingida pelo dardo: x^2 + y^2 \le 4
```

pontos: 60

região atingida pelo dardo: $4 < x^2 + y^2 \le 100$

ontos: 50

região atingida pelo dardo: $100 < x^2 + y^2 \le 225$

pontos: 20

região atingida pelo dardo: $225 < x^2 + y^2 \le 400$

pontos: 10

região atingida pelo dardo: $400 < x^2 + y^2 \le 625$

pontos: 0

região atingida pelo dardo: $x^2 + y^2 > 625$

Tendo como referência essas informações e considerando que todo dardo lançado sempre atingirá algum ponto do quadrado, julgue os itens de 131 a 135, assinale a opção correta no item 136, que é do tipo C, e faça o que se pede no item 137, que é do tipo B.

- **131** Se, em uma jogada, os três dardos lançados acertaram a região definida por $3 < x^2 + y^2 \le 25$, então a pontuação obtida foi superior a 100.
- **132** A probabilidade de um dardo acertar o círculo de raio 25 cm é maior do que a probabilidade de esse dardo acertar um ponto do quadrado localizado no primeiro quadrante.
- **133** A probabilidade de que sejam obtidos 60 pontos em um arremesso do dardo é superior a $\pi/60$.

- **134** A probabilidade de uma pessoa somar 300 pontos em uma jogada é igual a $\pi^3/40^6$.
- **135** Considere que, se um jogador fizer pelo menos 200 pontos em uma jogada, ele receba o prêmio de R\$ 100,00. Nesse caso, se, no primeiro dardo lançado, o jogador conseguiu no máximo 20 pontos, então a probabilidade de ele ganhar o prêmio é inferior a 10⁻⁵.
- **136** Considere que, no sistema de coordenadas ortogonais xOy, cada ponto (x, y) do plano cartesiano seja identificado pelo número complexo z = x + iy, em que $i^2 = -1$. Nesse caso, se, em uma jogada, os dardos acertaram os pontos $z_1 = \frac{1-i}{1+i}$,

$$z_2 = \frac{30-10i}{1+i}$$
 e $z_3 = \frac{16}{1-i}$, então a pontuação obtida foi igual a

- **A** 220.
- **3** 180.
- **9** 160.
- **1**20.
- **137** Considerando que, em uma jogada, os dardos acertaram os vértices do triângulo formado pelas retas x y = 0, x + y = 2 e y + 2x = 12, calcule a pontuação obtida. Após efetuar todos os cálculos solicitados, despreze, para a marcação no **Caderno de Respostas**, a parte fracionária do resultado final obtido, caso exista.

A *geleca*, um material mole e colorido que diverte muito as crianças, pode ser feita com ingredientes simples: cola de papel, corante e água boricada. A água boricada pode ser preparada pela dissolução de ácido bórico (H_3BO_3) em água. Após a dissolução, íons $B(OH)_4^-$ (tetraidroborato) se formam a partir do ataque nucleofílico da água ao H_3BO_3 , conforme a seguir.

$$H_3BO_3 + H_2O \Leftrightarrow B(OH)_4^- + H^+$$

Na *geleca*, o íon B(OH)₄ promove a formação de ligações de hidrogênio que entrecruzam as cadeias do polímero PVA (álcool polivinílico), principal constituinte da cola de papel, o que confere elasticidade ao material. Além disso, como as ligações de hidrogênio são facilmente desfeitas e refeitas, é grande a capacidade de deformação do material.

A partir dessas informações, julgue os itens de **138** a **142** e assinale a opção correta no item **143**, que é do **tipo C**.

- **138** Do ponto de vista do equilíbrio químico, a formação do íon B(OH)₄-, conforme a reação indicada, é favorecida em meio básico.
- **139** Na reação apresentada, o fato de a água fornecer um par de elétrons para o estabelecimento de uma ligação covalente com o átomo de boro faz que ela atue como um ácido de Lewis.
- **140** No ácido bórico, as ligações do átomo central de boro estão dispostas segundo os vértices de uma pirâmide trigonal.
- **141** Considerando-se 3,14 como o valor aproximado de π , infere-se que, com um litro de *geleca*, é possível moldar uma esfera de raio superior a 7 cm.
- **142** O PVA é capaz de formar ligações de hidrogênio com a água, o que confere solubilidade ao polímero no referido solvente.
- **143** Considerando que o PVA seja formado a partir de reações de polimerização por adição, assinale a opção que apresenta a nomenclatura correta do monômero a ser empregado.
 - a etanol
 - **1**,2-etanodiol
 - etenol
 - 1,2-etenodiol

O quadrado mágico, um antigo jogo de tabuleiro, consiste em dispor números inteiros em uma matriz quadrada de modo que a soma dos elementos de cada linha, a soma dos elementos de cada coluna e a soma dos elementos das diagonais principal e secundária são números iguais.

Considerando que a matriz
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 forma um

quadrado mágico, julgue os itens a seguir.

- **144** Se todos os elementos da terceira coluna de *A* são nulos, então, necessariamente, a matriz *A* é a matriz nula.
- **145** Se *B* for a matriz obtida de *A* somando-se a cada elemento um mesmo número inteiro, então *B* também será um quadrado mágico.
- **146** Se $a_{11} = 0$, $a_{12} = 5$, $a_{13} = -2$ e $a_{22} = 1$, então a_{31} é o elemento de maior valor da matriz A.

O diodo semicondutor é um componente eletrônico que tem duas polaridades: anodo (terminal positivo) e catodo (terminal negativo). O diodo semicondutor é chamado retificador, pois permite a passagem de corrente elétrica apenas quando está conectado no circuito na forma denominada direta; ou, de maneira mais simplificada, funciona como se fosse uma válvula que só deixa a corrente passar pelo circuito em um sentido.

Tendo como referência o texto apresentado, julgue os itens seguintes.

- **147** A partir das informações do texto, infere-se que, para que o diodo opere na forma direta, o polo negativo da bateria deve ser ligado ao anodo e o positivo, ao catodo.
- 148 Considere que a corrente máxima permitida através de um diodo seja de 0,02 A e que, para essa corrente máxima, a tensão aplicada aos seus terminais sofra uma queda de 1,8 V com referência à tensão fornecida pela bateria. Nesse caso, se uma bateria de 3 V for conectada a esse diodo, deve-se inserir, entre a bateria e o diodo, um resistor com resistência inferior a 55 Ω.
- 149 Considere que seja necessário inserir, entre o diodo e a bateria, um resistor de resistência 100Ω , mas só estejam disponíveis resistores de resistência $R = 37,5 \Omega$. Nesse caso, o valor da resistência desejada pode ser obtido usando-se a seguinte associação de resistores, cada um deles de resistência R: dois resistores ligados em série a uma associação de três resistores em paralelo, que estão, por sua vez, ligados em série a outra associação de três resistores ligados em paralelo.

Se um gerador possui uma potência interna, parte da energia é dissipada por efeito joule no próprio gerador. A potência útil é a diferença entre a potência total e a potência dissipada pelo gerador. O rendimento de um gerador expressa a relação entre a potência útil e a potência total do gerador.

Tendo como referência essas informações, assinale a opção correta no item a seguir, que é do **tipo C**.

- **150** Considere um circuito constituído de um gerador com força eletromotriz igual a 36 V e resistência interna igual a 2 ohms ligado a um resistor de resistência 10 ohms. Nessa situação, o rendimento desse gerador está entre
 - **a** 0,80 e 0,90.
 - **3** 0,70 e 0,80.
 - **9** 0,60 e 0,70.
 - **0** 0,50 e 0,60.

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

	1																	18
1	1 H 1,0	2											13	14	15	16	17	2 He 4,0
2	3 Li 6,9	4 Be 9,0											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
3	11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	39,1 37 Rb	40,1 38 Sr	45,0 39 Y	47,9 40 Zr	50,9 41 Nb	52,0 42 Mo	54,9 43 Tc	55,8 44 Ru	58,9 45 Rh	58,7 46 Pd	63,5 47 Ag	65,4 48 Cd	69,7 49 In	72,6 50 Sn	74,9 51 Sb	79,0 52 Te	79,9 53	83,8 54 Xe
	85,5	87,6	88,9	91,2	92,9	95,9	(98)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	127,0	131,3
6	55 Cs	56 Ba	57-71 La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po (209)	85 At (210)	86 Rn (222)
7	132,9 87 Fr (223)	137,3 88 Ra (226)	89-103 Ac-Lr **	178,5 104 Rf (261)	181,0 105 Db (262)	183,9 106 Sg (266)	186,2 107 Bh (264)	190,2 108 Hs (277)	192,2 109 Mt (268)	195,1 110 Ds (281)	197,0 111 Rg (272)	200,6 112 Uub (285)	204,4 113 Uut (284)	207,2 114 Uuq (289)	209,0 115 Uup (288)	(209)	(210)	(222)
		érie d antaní		57 La 138,9	58 Ce 140,1	59 Pr 140,9	60 Nd 144,2	61 Pm (145)	62 Sm 150,4	63 Eu 152,0	64 Gd 157,3	65 Tb 158,9	66 Dy 162,5	67 Ho 164,9	68 Er 167,3	69 Tm 168,9	70 Yb 173,0	71 Lu 175,0
	** s	série d actiníd	los leos	89 Ac (227)	90 Th 232,0	91 Pa 231,0	92 U 238,0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Observação: Massas atômicas com valores arredondados

Tabela de valores das funções seno e cosseno

θ	sen θ	cos θ				
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$				
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$				
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$				

