PROVA DISCURSIVA

- Nesta prova, faça o que se pede, usando, caso deseje, o espaço para rascunho indicado no presente caderno. Em seguida, transcreva
 o texto para a FOLHA DE TEXTO DEFINITIVO DA PROVA DISCURSIVA, no local apropriado, pois não será avaliado
 fragmento de texto escrito em local indevido.
- Qualquer fragmento de texto que ultrapassar a extensão máxima de linhas disponibilizadas será desconsiderado.
- Não será avaliado o texto em cuja Folha de Texto Definitivo o candidato insira qualquer assinatura ou marca identificadora.
- Ao domínio do conteúdo serão atribuídos até **40,00 pontos**, dos quais até **2,00 pontos** serão atribuídos ao quesito apresentação (legibilidade, respeito às margens e indicação de parágrafos) e estrutura textual (organização das ideias em texto estruturado).

A amostra aleatória simples X_1 , X_2 , ..., X_n , retirada de uma distribuição de Bernoulli, é tal que $P(X_k = x | \pi = p) = p^x(1 - p)^{1-x}$, para x = 0 ou x = 1, 0 e <math>k = 1, 2, ..., n. O tamanho n da amostra é conhecido, e a probabilidade p representa o objeto de estimação, cuja estatística suficiente é dada pela soma $\mathbf{Y} = \sum_{k=1}^{n} X_k$.

Considerando a situação hipotética acima apresentada, redija um texto dissertativo acerca de estimação por intervalos.

Em seu texto, faça o que se pede a seguir:

- defina intervalo de credibilidade, e explique como ele pode ser interpretado; [valor: 14,00 pontos]
- 2 exemplifique um intervalo de credibilidade; [valor: 12,00 pontos]
- 3 discorra acerca das distinções entre um intervalo de credibilidade e um intervalo de confiança frequentista. [valor: 12,00 pontos]

RASCUNHO

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	